77 research outputs found

    A codon substitution model that incorporates the effect of the GC contents, the gene density and the density of CpG islands of human chromosomes

    Get PDF
    Abstract Background Developing a model for codon substitutions is essential for the analyses of protein sequences. Recent studies on the mutation rates in the non-coding regions have shown that CpG mutation rates in the human genome are negatively correlated to the local GC content and to the densities of functional elements. This study aimed at understanding the effect of genomic features, namely, GC content, gene density, and frequency of CpG islands, on the rates of codon substitution in human chromosomes. Results Codon substitution rates of CpG to TpG mutations, TpG to CpG mutations, and non-CpG transitions and transversions in humans were estimated by comparing the coding regions of thousands of human and chimpanzee genes and inferring their ancestral sequences by using macaque genes as the outgroup. Since the genomic features are depending on each other, partial regression coefficients of these features were obtained. Conclusion The substitution rates of codons depend on gene densities of the chromosomes. Transcription-associated mutation is one such pressure. On the basis of these results, a model of codon substitutions that incorporates the effect of genomic features on codon substitution in human chromosomes was developed.</p

    Mutations of Different Molecular Origins Exhibit Contrasting Patterns of Regional Substitution Rate Variation

    Get PDF
    Transitions at CpG dinucleotides, referred to as β€œCpG substitutions”, are a major mutational input into vertebrate genomes and a leading cause of human genetic disease. The prevalence of CpG substitutions is due to their mutational origin, which is dependent on DNA methylation. In comparison, other single nucleotide substitutions (for example those occurring at GpC dinucleotides) mainly arise from errors during DNA replication. Here we analyzed high quality BAC-based data from human, chimpanzee, and baboon to investigate regional variation of CpG substitution rates

    Comparison of phylogenetic trees through alignment of embedded evolutionary distances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The understanding of evolutionary relationships is a fundamental aspect of modern biology, with the phylogenetic tree being a primary tool for describing these associations. However, comparison of trees for the purpose of assessing similarity and the quantification of various biological processes remains a significant challenge.</p> <p>Results</p> <p>We describe a novel approach for the comparison of phylogenetic distance information based on the alignment of representative high-dimensional embeddings (xCEED: Comparison of Embedded Evolutionary Distances). The xCEED methodology, which utilizes multidimensional scaling and Procrustes-related superimposition approaches, provides the ability to measure the global similarity between trees as well as incongruities between them. We demonstrate the application of this approach to the prediction of coevolving protein interactions and demonstrate its improved performance over the mirrortree, tol-mirrortree, phylogenetic vector projection, and partial correlation approaches. Furthermore, we show its applicability to both the detection of horizontal gene transfer events as well as its potential use in the prediction of interaction specificity between a pair of multigene families.</p> <p>Conclusions</p> <p>These approaches provide additional tools for the study of phylogenetic trees and associated evolutionary processes. Source code is available at <url>http://gomezlab.bme.unc.edu/tools</url>.</p

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Assis, Juliana. FundaciΓ³n Oswaldo Cruz; BrasilFil: Gomes AraΓΊjo, FlΓ‘vio M.. FundaciΓ³n Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. FundaciΓ³n Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; ArgentinaFil: Oliveira, Guilherme. Instituto TecnolΓ³gico Vale; Brasil. FundaciΓ³n Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologΓ­a y ParasitologΓ­a MΓ©dica; Argentin

    GC Content Increased at CpG Flanking Positions of Fish Genes Compared with Sea Squirt Orthologs as a Mechanism for Reducing Impact of DNA Methylation

    Get PDF
    Background: Fractional DNA methylation in sea squirts evolved to global DNA methylation in fish. The impact of global DNA methylation is reflected by more CpG depletions and/or more A/T to G/C changes at CpG flanking positions due to context-dependent mutations of methylated CpG sites. Methods and Findings: In this report, we demonstrate that the sea squirt genes have undergone more CpG to TpG/CpA substitutions than the fish orthologs using homologous fragments from orthologous genes among Ciona intestinalis, Ciona savignyi, fugufish and zebrafish. To avoid premature transcription, the TGA sites derived from CGA were largely converted to TGG in sea squirt genes. By contrast, a significant increment of GC content at CpG flanking positions was shown in fish genes. The positively selected A/T to G/C substitutions, in combination with the CpG to TpG/CpA substitutions, are the sources of the extremely low CpG observed/expected ratios in vertebrates. The nonsynonymous substitutions caused by the GC content increase have resulted in frequent amino acid replacements in the directions that were not noticed previously. Conclusion: The increased GC content at CpG flanking positions can reduce CpG loss in fish genes and attenuate the impact of DNA methylation on CpG-containing codons, probably accounting for evolution towards vertebrates. Β© 2008 Wang, Leung.published_or_final_versio

    Relationship between amino acid composition and gene expression in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is a phenomenon that refers to the differences in the frequencies of synonymous codons among different genes. In many organisms, natural selection is considered to be a cause of codon bias because codon usage in highly expressed genes is biased toward optimal codons. Methods have previously been developed to predict the expression level of genes from their nucleotide sequences, which is based on the observation that synonymous codon usage shows an overall bias toward a few codons called major codons. However, the relationship between codon bias and gene expression level, as proposed by the translation-selection model, is less evident in mammals.</p> <p>Findings</p> <p>We investigated the correlations between the expression levels of 1,182 mouse genes and amino acid composition, as well as between gene expression and codon preference. We found that a weak but significant correlation exists between gene expression levels and amino acid composition in mouse. In total, less than 10% of variation of expression levels is explained by amino acid components. We found the effect of codon preference on gene expression was weaker than the effect of amino acid composition, because no significant correlations were observed with respect to codon preference.</p> <p>Conclusion</p> <p>These results suggest that it is difficult to predict expression level from amino acid components or from codon bias in mouse.</p

    Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus)

    Get PDF
    Across an individual\u27s life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500&ndash;1600 m&bull;h&minus;1) and a reduction in postdive duration (111&ndash;90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (&lt;2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (&gt;2.9 d) effort increased up to 2&ndash;3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4&ndash;5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this specie

    Genome-Wide Functional Divergence after the Symbiosis of Proteobacteria with Insects Unraveled through a Novel Computational Approach

    Get PDF
    Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont (prokaryote) with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity

    GPCR Genes Are Preferentially Retained after Whole Genome Duplication

    Get PDF
    One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms
    • …
    corecore